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Abstract:  A control strategy for a class of biological population model simulating prey-predator relationship using 

backstepping scheme is presented, the increasing rate of predator population has the effect of reducing the growth 

rate of the preys, and this reduction depends on the number of encounters between individuals of the two species. 

The Lotka Volterra model controller is systematically designed via a recursive procedure that skillfully interlaces 

the choice of a Lyapunov function with the control to eliminate the undesirable chaotic oscillation. Theoretically, it 

has been proved that the error signal can exponentially converge to zero. Numerical simulations are presented to 

show the effectiveness and feasibility of the method of control. The simulations revealed that by choosing the 

proper parameters of the controller, there will be a stabilize chaotic dynamics of the system to the stable 

equilibrium point thereby making the output signal to track all kinds of reference signals. 
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Introduction 

The Lotka-Volterra model is a nonlinear model that allows for 

mathematical calculation (Baosheng et al., 2011), it has been 

used extensively for modeling evolutionary game dynamics 

(Madeo & Mocenni, 2015), economic theory (Huu & Costa-

lima, 2014), biological systems (Křivan & Priyadarshi, 2015), 

chemical reactions (Magyar, Szederkényi, & Hangos, 2008), 

plasma physics (Laval & Pellat, 1975). Since Ott et al. (1990) 

first successfully controlled chaotic system using the OGY 

method and the subsequent realization of the idea of master-

slave synchronization of chaotic systems and its possible 

application to secure communications by Pecora & Caroll 

(1990). Recently, many researchers are looking into the 

dynamics of population with time delays and this can be 

applied in the control of mankind, animals and environmental 

population (Tayir et al., 2016). The field of chaos control and 

tracking has triggered an avalanche of publications both from 

the theorists and the control engineers due to its ubiquitous 

applications especially in areas such as information science, 

medicine, biology and engineering. A formal statement of a 

control problem typically begins with a model of the system 

to be controlled (controlled plant) and a model of the control 

objective (control goal). A typical control goal systems is to 

transform a chaotic trajectory into a periodic one, control 

theory can be referred to as stabilization of an unstable or 

equilibrium system. From the viewpoint of system structure, 

most of the proposed chaos control methods focus on the 

study of self-synchronization for low dimensional chaotic 

systems (Blekhman et al., 1997; Yang et al., 2019). 

A specific feature of this problem is the possibility of 

achieving the goal by means of a virtual control action. In 

many cases, synchronization and chaotization can also be 

achieved by small control (Andrievskii & Fradkov, 2003) 

several classes of models are considered in paper reviews on 

chaos control and most common class is described in state 

space by differential equations. In many control applications, 

to design a controller that can alter or modify the behavior and 

response of an unknown plant to meet certain performance 

requirements can be tedious and challenging. This process is 

characterized by a certain number of inputs 'u' and outputs 'y'. 

The plant inputs (u) are processed to produce several plant 

outputs y that represents the output response of the plant. The 

task of the designed control is to choose the input 'u' so that 

the response y(t) satisfies certain given performance 

requirements. The three pioneering and most actively 

developing major branches of research such as feed forward 

control (also called non-feedback or open-loop (vibrational)) 

control based on periodic system excitation (Morgul, 1999), 

OGY method (based on linearization of Poincaré map) (Ott  et 

al., 1990) and time-delayed feedback also referred to as 

Pyragas method (Pyragas, 1992) are actively explored. 

Nevertheless, they face numerous unsolved problems 

concerned mostly with a justification of chaos control 

methods. Control of chaos is closely related to nonlinear 

control and many well-developed engineering methods of 

control such as linear and nonlinear control; adaptive control; 

neural networks; fuzzy control has been shown to be 

applicable and efficient for chaotic systems (Vincent, & Yu, 

1991). The existence of a feedback passifying, that is, making 

passive, the closed-loop system is the prerequisite for 

efficiency (attainment of the objective) of the majority of the 

above approaches. From the point of view of “small control,” 

the methods based on passivity offer an advantage because 

they allow one to attain the goal independently of the gain. 

In nonlinear control theory, the problem of stabilizing the 

invariant objective manifold h(x) = 0 by a small control is 

solved by Tian (1999) using the method of macro variables 

proposed by Kolesnikov (1987). Other methods of the modern 

theory of nonlinear control such as the theory of center 

manifold (Friedel et al., 1997) the backstepping procedure and 

the methods of iterative sign (Mascolo & Grassi, 1999), the 

method of passivity-based design (Miroshnik & Nikiforov, 

2000), the method of variable-structure systems (VS-system) 

(Fang et al., 2000) the theory of absolute stability (Suykens et 

al., 1998), the H∞-optimal design (Curran et al., 1997; 

Suykens et al., 1997) and a combination of the direct 

Lyapunov method and linearization by feedback (Loria et al., 

1998), were used to solve the problems of stabilization about 

the given state or the objective manifold. 

It was reported by Xu et al. (2011) that, some researchers 

investigated the equilibrium of prey predator system and they 

were able to study the properties of Hopf bifurcation for the 

system by using normal form theory. However, despite 

numerous publications, control of chaos remains an area of 

intensive research and only a few strict facts were established 

there, and many issues remain open. In view of the wide scope 

of possible applications, this area is of interest both to the 

theorists and the control engineers. The present work aims to 

help gain an insight into the state-of-art in this vast domain of 

research and its most interesting applications.  
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Materials and Methods 

Backstepping design 

The backstepping design is used in this paper and it can be 

define as a systematic Lyapunov function control technique 

which can be applied to pure-feedback systems, block strict-

feedback systems and recursive feedback systems (Krstic et 

al., 1995) but this work focused on recursive backstepping 

systems. The backstepping approach provides recursive 

method for stabilizing the origin of a system in strict-feedback 

form. Considering a system of the form: 

 

 

 
 

11  kifor  

Where  

1. withRX n n 1  

2. kki zzzzz ,,,,,, 121   are scalars, 

3. u is a scalar input to the system, 

4. kkix ffffff ,,,,,, 1,21   vanish at the 

origin (i.e., 
if (0,0, …, 0) = 0), 

5. 
kki ggggg ,,,,,, 121   are non zero over 

the domain of interest (i.e., 
ig ( KZZX ,, ,1 ) 

0  for 1 ).ki   

Also assume that the subsystem X = )(Xf x
 + 

xg (x) 

xu (X) 

Is stabilized to the origin (i.e., X = 0) by some known control 

xu (X) such that 
xu (0) = 0. The back stepping-designed 

control input u has its most immediate stabilizing impact on 

state 
.nz  

The state 
nz then acts like a stabilizing control on the 

state 
1nZ  before it. 

6. This process continues so that each state 
iz is stabilized 

by the fictitious “control” 
iZ + 1. 

7. The Backstepping approach determine how to stabilized 

the x subsystem using ,1z and then determine how to 

make the next state 2z  drive 1z to the control required 

to stabilize X. Therefore, the process steps backward 

from X out of the strict-feedback form system until the 

ultimate control u is designed. 

 

Lotka-Volterra model 

The model was proposed by an Italian mathematician, 

Umberto Volterra in 1926 (Volterra, 1926). He used a 

mathematical model of a predator-prey situation to explain 

why Italian fishermen caught a larger percentage of sharks 

and other predator fish (corresponding decrease in prey fish) 

during the first World War 1 in the Adriatic Sea than was true 

both before and after the war. At the same time in the United 

States, Volterra equations were derived independently by 

Alfred Lokta (1920) to describe a hypothetical chemical 

reaction in which the chemical concentrations oscillate. The 

simplest model of predator-prey interactions is the Lotka-

Volterra model. 

Let x(t) denote the population of the prey, and let y(t) denote 

the population of the predators. In the absence of the 

predators, the prey population would have a birth rate greater 

than its death rate, and consequently would grow according to 

the exponential model of population growth, i.e. the growth 

rate of the population would be proportional to the population 

itself. The presence of the predator population has the effect 

of reducing the growth rate, and this reduction depends on the 

number of encounters between individuals of the two species. 

Since it is reasonable to assume that the number of such 

encounters is proportional to the number of individuals of 

each population, the reduction in the growth rate is also 

proportional to the product of the two populations, i.e.,  

            xyaxx     (1) 

 

More so, the predator population is a dependent population, it 

depends on the prey population for its food supply and it's 

natural to assume that in the absence of the prey population, 

the predator population would actually decrease, i.e. the 

growth rate would be negative. Furthermore, the (negative) 

growth rate is proportional to the population. The presence of 

the prey population would provide a source of food, so it 

would increase the growth rate of the predator species. By the 

same reasoning used for the prey species, this increase would 

be proportional to the product of the two populations, i.e. 

.xycyy                                (2) 

The Lotka-Volterra model in its original form is given as 

 

 

 
xycyy

xyaxx












                             (3) 

x  and y  represent the instantaneous growth rates of the two 

populations; t  represents time; it is known that the variation 

of the parameters ),,,(  ca results in various types of 

dynamical behavior including quasi-periodicity and transition 

to chaos. 

Backstepping design for the controller 

Here, we introduce )(tu into Eq. 3 in order to design a 

nonlinear controller that eliminates undesirable chaotic 

oscillation. The aim is to choose an appropriate Lyapunov 

function V whose time derivative 
.

V  is made non-positive, 
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i.e., 0
.

V  by properly choosing the differential 

equation of the adaptive law. 

Thus, we have the strict feedback form as; 

  
)(tuxycyy

xyaxx













                         (4) 

 

By redefining the variables 

 If      

2

1

xy

xx








                                          (5)   

Therefore; 

 
)(2122

2111

tuxxcxx

xxaxx












               

(6)  

In the recursive backstepping scheme, it is required that the 

state space 1x and 2x are to take desired values dx1 and

dx2 . Then the error signals are

 

 
dxxe

dxxe

222

111




                   

 (7) 

 Differentiating the error signals in Eq. 7 where dx1 is an 

equilibrium point of the system and 112 ecdx  ; 1c being a 

constant. Using Eq. 6 into Eq. 7 to obtain 

  

         tueceeaececececeee

eceeaee





11211111211212

112111







      (8) 

 Introducing the Lyapunov function 

  
2

11

2

12

1
ekV

i




                                         (9) 

 The time derivative of equation (9) is 





2

1

222111

i

iii eekeekeekV                       (10)

  

 

 Substituting Eq. 8 into Eq. 10 and setting ,01 k

0,1,1 12  vck  and 12 k . Since 

222 eekV    

 Hence  

11111111111212 eecceaceececceeceV  

     tuaeeeceeeV  112112    (11) 

By making the control  tu  the subject of formula 
 

     11211 aeeeeectu                    (12)
   

 

Then 02

2  ceV  is negative definite. Thus, the control 

goal is achieved and according to Lasalle-Yoshizawa theorem, 

it follows that all the solutions of system in Eq. 6 converge to 

equilibrium. Thus, the control goal is achieved and will 

present the numerical simulations to verify the effectiveness. 
 

 

Results and Discussion 

The temporal evolution of the model was investigated by 

solving numerically Eq. 3 using the controller obtained in Eq. 

12. For this purpose, the Runge-Kutta scheme was used. In 

the calculation, a step size of 0.0001 was used. The initial 

conditions are )01.0,1.0(),( oo yx  with computation 

over the interval [0, 120]. The constant parameters are given 

by
 

3.0,4.0  ca  and .05.0  

 

 

 
Fig. 1: Phase plot and Time Series of the system showing quasi-periodicity for varying values of   with other parameter 

values 3.0,4.0  ca and .05.0  0.1,8.0,6.0,4.0,2.0 , 2.1  for Fig(s). 1a-1f, respectively 
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Fig. 2: Time series of the system showing its dynamical behaviour 

is stable after the controller is triggered at t=50 for 

4.0,2.0 and 8.0 for Fig. 2a, 2b, and 2c, respectively. The 

system other parameters are 3.0,4.0  ca  and 

.05.0  

 

In Fig. 2, the controller u(t) is activated at t =50. As expected, 

one can observe that the output trajectory is asymptotically 

driven to a stable state as soon as the controller is applied, 

preventing it from entering the quasi-periodic state. This 

validates the effectiveness of the proposed control method. 

Conclusion 

Conclusively, the relationship between the predators and the 

preys was an exclusive irregular pattern. The research article 

was used to introduce a backstepping control method that can 

be used to solve the chaotic dynamics of the system based 

upon the Lyapunov stability theory. A controller was 

introduced into the differential equations for the simulations 

by choosing the proper parameters. The numerical simulation 

showed the dynamics of the model and the stabilizing of the 

chaotic dynamics of the model to attain a stable equilibrium 

point. 
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